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NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURE
by Charles M. Goldstein

Iewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

INTRODUCTION

The primary purpose of this paper is to describe a family of very
powerful numerical integration techniques for use at the Lewis Research
Center. The discussion and evaluation of these techniques will be of
interest, however, at all computing centers where the techniques are not
already receiving wide usage. Although the techniques are not new, or
original, an appreciation of the savings in computor time that may be
achieved by thelr application seems sadly lacking. In fact, a recent
book™ on "numerical methods and computor programming” discusses Simpson's
Rule but not Gauss' formula.

A comparison is made between these technigues and a modified
Simpson's Rule program, SIMPSly written by Drs. T. Fessler and W. Ford
of the Lewis Research Center. A brief description of SIMPS1 and how it
is related to ordinary Simpson's Rule will be presented herein.

A description of the Fortran IV programs and their call vectors is
given in the Appendix. The format presented herein is that of the Lewis
Monitor Manual. These programs, with the exception of QUAD4, have been
programmed by H. B. Renkel of the Lewis Research Center.

GAUSSTAN QUADRATURE
Gauss' Formule

According to Scafboroughz, "The most accurate of the quadrature for-
mulas in ordinary use is known as Gauss' formula." This formula can be
written in the following form:

+1 N
f f(x)dx = E: H, F{x,) (1)
-1

=1

The normalization to the region (-1,+1) imposes no real restriction (in
fact, the normelization is effected internally in the FCRTRAN programs).
The abscissas X, @and the weight coefficients H& have prescribed values
for each W. Kopal3 discusses the evaluation of Xy and ﬁm for any
given N.

The reason CGauss's formula has not received more complete acceptance
is given by Ralston? (1960): "Until recently Gaussian type quadrature
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formulas were seldom used because in most cases the abscissas are
irraticnal numbers, which, of course, makes them inconvenient for hand
computation. However, oa digital computers this argument has little
weight . . ."

Gauss' formula [ec,. .1,) has been programmed in single and double
precision. These function subroutines and their call vectors are de-
scribed in the appendix.

Weight Functions

A series of formulas telonging to the Gaussian quadrature family is

of the form
b N
Wix)f %) dx = E oo fox (2)

a, Qo

where W(x) 1is a given weight function. A List of the more common for-
mulas of this type and their definition is given in takle I. In the last
column of table I the FURTRAN IV subprogram names are given. SQUADL and
DSQUADL are sutroulines. ALL the others are function subprograms. The
prefix D denotes double wrecisiomm programs. These s.tprograms are more
fully described in the appendix.

To appreciate the desirability of QUADZ2, it must be recognized that
all commonly used integration formulas implicitly assume +kat the inte-
grand may be approximated (over the region of integraticr) by a polynominal.
Germane to the weight 1/§ it must also pe recogrized trat no polynominal
expansion in the ind=zpendent variable can represest a curve trnat possesses
an infinite derivative withirn the region of interesi.

The comments for the case when the izntegrand has az infinite deriva-
tive apply even more so when the integrand is singu.ar i~ the region of
integration (viz., QJAD 3, QUAD 4).

Ncte that the formulas given herelni are all open-ended formulas; that
is, the integration formulias do not evaluate She irtegrand at the end-
points. This property will be used later 4o advantage wren the integrand
has an impiicit sirgularity. For further progeriics of Jaussian quadra-
ture coasuit reference 3.

The coefficierts and abscissas of JSher weighted-Gaussian quadrature
formulas are So be Zound in refercuce 5 and recent literature (such as the
Journal of Mathematics of omputatiorn’.

Muitiple Integratio:s

It is ofteu necessary to numerically irtegrate equations of the fol-
lowing type:




TABLE I. - GAUSSIAN QUADRATURE FORMULAS

Quadrature Refer- FORTRAN IV
formuls names ence routine names®
+1 N
Gauss £(x) ax = ) Hf(x) 3 QUADL, DQUADL
-1 =1 SQUAD1, DSQUAD1
1 N
+/X - Weighted ~x £(x) =) H £(x) 5 QUAD2
Gaussian a=1
1 L I
— - Weighted £(x) 4 ) H £(x_) 6 QUAD3, DQUAD3
“/E Gaussian "~/>—C o=
1 N
Logarithmic Gaussian u[ £(x) Inx ax = ) B f(x ) | (b) QUAD4
a=1
o N
Gauss-Laguerre I e"%f(x) dx = E H af(xa) 7 QUADS, DQUADS
/ Q=
to 2
Gauss-Hermite \/[\ e™X f(x) dx = E%: H f(xa) 7 QUAD8, DQUADSE
00

Bsee appendix.

bPrivate commanication from Peter Sockol.



+1 (x)
f £(x) f g(x,y) dy dx (3)
-1 a(x)

Subroutines SQUADL and DSQUADL are presented in the appendix for this
purpose.

EVALUATION

Usually, a reasonabie indication of the efficilency of a method for
numerical integration is given by the number of times the integrand must
be evalusted to achieve a particular accuracy. Table II presents the re-
sults of numerically integrating the integral

1
‘/[\ W{x)f(x) dx (4)
9]

for various weights W(x) and functions f(x) by SIMPSLl and the eppropri-
ate Gaussian quadrature formula. The singular integrands (exemples 3, 4,
7 to 10, and 1% in table LI, cannot, of course, be evaiuated by Simpson's
Rule to the singalari®, |sece, zeru) but can culy e evaluated to within
some € of it, Resuiss for e = 157% and ¢ = 1.7° are presented in
the table. Ng denotes the number of times SIMPSL evaluated the integrand.
The error, in examples 1 to 12, is given in uzits of the eighth digit, and
represents the absolute error. The Gaussian quadrature errors are tabu-
lated for 3, 5, 7, 9, and 11 integration points, respectively. The last
column in the table shows the ratio of NS to NG where NG represents
the number of times the Gaussian guadrature needed o evaluate the inte-
grand to achieve an crror comparatle to SIMZSI.

Examples 1 to 12 were chosen so that the integral could be performed
exactly and an accurate absoiute error cuuld te obtained. Example 13 is
an evaluation of the folilowiag integrai:

1 =l K e : v
1 — T
f 1p ~/i + e + qfl oplx) Ax (5)
C IR X A+ ~ox)

where
Plxy s O b By
A = C.0L3
This integral was encounlered by the author in a recent proplem and is

included to show that even with a not too tadly behaved integrand, the
ratio Ng/N, mey exceed 1C.
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1
TABLE IT. - RESULTS OF EVALUATING\J/\ W(x) f£(x) dx
0

Example | W(x) f(x) SIMPS1 Gaussian quedratures Ng
Ng | Error | Routine Error o
3150 7911
1 1 1+ x 5 O | Quapl [ of o] ofo|-1]| 1.6
2 ~/x 49| -10 | Quap2 [ o} o] o |0 0o]16
3 1/+/x 8117 -4 | QUAD3 | -1} O] -1 |-1|-1}| 39
4 1n x 897 1| Quapse | ol of 2|1 132
5 1 1/(1 + x)| 17 -1 | QUADL | =~ |-4] -1 |-2|-2] 3.4
6 ~/x 57 | -85 | QUAD2 | - |-2| -1 |-2|-2]17
7 1/+/x 8137 -2 | QUAD3 | -1 of 00| ofze7
8 in x 8109 +8 | QUAD4 | - 4| 5| 4| 8]22
9 1/+/% b157 -3 | QuaD3 | - | of o o| of31
10 1n x b117 -3 | Quape | - | 4| 5| 4| 6|23
11 1 10e~10x 61 -7 | QUADL | - | -]-65 |-2|-3]| 7
12 | 1/4/% géggégiiﬁ'blgg 25 | quaps | 31| o| o [-2|-2| 3¢
13 1 eq. (5) | 98 - Quapl | - | -| ¢ [0 | 11
(a) € = 1074
(b) € = 105,

(¢) Error relative to SIMPSI.




Exemple 12 sactually represents the integration of

1 X
LO8 X __ gy (8)
0 2+/8in x

where there is an implicit 1/1/§ singularity in the integrand. This
integral is easily evaluated by QUAD3 when expressed in the form

. cos X 1 ax
0 ,sin X W/E
2 X

where the function cos x/2-/sin x/x 1is well behaved. Note that this
integration does not necessitate a prior evaluation of sin x/x at

X = 0 since, as previously mentioned, the Gaussian gquadratures do not
evaluete the integrand at the end points.

The range of values of the ratio NS/NG shown. in teble II must be

considered from two different perspectives: as a measure of the efficiency
of Gaussian quadrature methods compared with ordinary Simpson Integration,
and as a measure of the Gaussian gquadrature methods compared with SIMPS1l
(presumably only at lewis, to date). SIMPS1 is an ingenious function sub-
program for the evaluation of integrals wherein the integrand may have many
sharp peaks. SIMPSl does not subdivide the region of integration uniformly,
but preferentially subdivides only those subregions where it is necessary
to achieve a prescribed maximum error. The basic integration technique
employed by SIMPS1 is Simpson's Rule. Hence, SIMPS1l, is a Simpson's Rule
technique which minimizes the evaluation of the integrand. TIn other words,
to obtain the same accuracy with a normal Simpson's Rule would require
evaluation of the integrand at intervals equal to the smallest interval
employed by SIMPS1 over the whole range. This would in general, be many
times the values shown for Ng in teble II for evaluation of the same inte-
grals. Therefore, the ratios NS/NG given in table II are very conservative
estimates of the efficiency of Gaussian quadrature techniques when compared
with ordinary Simpson's Rule.

The ratio NS/NG does not provide a fair comparison of the Gaussian
quadrature formulas with SIMPS1 since the latter may employ each evaluation
of the integrand many times and use many more operations than the former.
Table III shows a comparisor of three examples from table II on the basis of
time. The ratio TS/TCT shows the increase in speed available with the
Gaussian quadrature, where Tg and Ty are the times needed to perform the
integration by SIMPSl and Gaussian quadrature, respectively. In the last
column of table IIT, Ty represents the time spent in evaluating the inte-
grand. Hence, the ratio represents a comparison of the time spent by the
two methods in operating on the integrand evalustions.

Table IV gives an indication of the accuracy obtainable with a double
precision Gauss' formula (DQUADL).




TABLE III. - COMPARISON BETWEEN NUMBER OF EVALUATIONS

OF INTEGRAND AND COMPUTATION TIME

Example Evaluation of Time
from integrand
table II Ts/Te | Is =TI
Ny | Ng | g/Ng Tg - Tp
S 17 5 3.4 4.7 5.3
9 157 S 31 91 78
12 169 S 22 46 177

TABLE IV. - DOUBLE PRECISION EVALUATION

1
OF f f(x)dx BY GAUSS' FORMULA
0

f£(x) N Absolute error
2 -
% e'X 16 SLO 15
b

5 -
cos 7; X 13 <10 15




CONCLUSIONS

It has been shown that Geussian quadresture is highly superior to
ordinary Simpson's Rule or SIMPS1 for & rather wide class of functions.
The examples considered show an 1ncrease in actual speed of the Gaussian
quadrature routines over SIMPS1 of from 4.7 to 91 times. Since the ma-
Jority of numerical integrations performed at large computing centers
treat far less pathological integrands than those for which SIMPS1 was
designed, it would appear advantageous to use the more rapid Gaussian
quedratures whenever possible. One advantege of SIMPS1l, however, is
that it does provide an excellent means of determining the optimum
nunber NG needed for a given accuracy with Gaussian guadratures.




APPENDIX - FORTRAN PROGRAM DESCRIPTIONS

QUAD1/INTEGRATION

Purpose Funetion subprogram used to perform the numericel integration of

XF
MZ: f(x) ax
0

by Gauss' formula. A very powerful method for minimizing machine
time in production runs when the integrand and first derivative
are continuous in the region of integration.

Calling

Sequence QUADL(N,NS,X0,XF, FOFX)
N is the number of points per division.
NS is the number of divisions into which XF-XO is divided (this
is provided in case 16 points is not sufficient - see below)
FOFX is an external function subprogram.
N = 3(1)16* 9D

Source

Lenguage FORTRAN IV

Reference 8
DQUADL/DOUBLE PRECISION INTEGRATION

Purpose Double Precision version of QUAD1 (qg.v.)
Calling
Sequence DQUADL(N,NS,XC,XF,FOFX)

FOFX must be a double precision function

N = 3(1)15, 15D

N = 16(4)24(8)48(16)9s, 17 D
Reference 8

*This notation denotes that W <takes on all values from 3 to 16 at
unit increments; for example, N = 3(1)6(2)12 signifies N = 3,4,5,6,8,10,12,

**Data available to 21 D. on punched cards.




Purpose

Calling
Seguence

EXAMPLE

Purgose

20

10

10

SQUADL /INTEGRATION OF MULTIPLE INTEGRALS

Subroutine subprogram used to perform the numerical integra-
tions of the types

XF ZF(x)
\‘[ f(x) I g(x,z) dz dax
0 o(x)

by repeated application of Gauss' formula. (cf. QUADL)

SQUADL1 (MODE,N,X0,XF,X,Y,ANSWR)
MODE = 1, Obtain arguments X(N).
= 2, Use evaluations of integrand Y(X(N)) to obtain ANSWR.
N number of points of integration
X arguments - must be dimensioned array neme X(N)
Y -~ must be dimensioned array name Y(N)
ANSWR result of integration

C X
I F(x)f G(x') dx' dx
A

A,B,C constants
F(X), G(X') function subprograms

CALL SQUADL (1,NF,B,C,XF,YF,FINTGL)
DO 10 T = 1,NF

CALL SQUADL (1,NG,A,XF(I),XG,YG,ANSWR)
DO 20 J = 1,NG

YG(J) = G(XG(J)). ..

CALL SQUADL (2,NG,A,XF(I),XG,YG,ANSWR)
YF(T) = ANSWR® P(XF(I)) .

CALL SQUADL (2,NF,B,C,XF,YF,FINTGL)

DSQUADL/DOUBLE PRECISION MULTIPLE INTEGRATION

Double precision version of SQUAD1 (q.v.)




Purgose

Calling
Seguence

Reference

Purpose

Calling

Seguence

Reference

Purgose

11

QUAD2 /INTEGRATTION

Function subprogram used to perform the numerical integration of

F
'\/'X - XG' f(x) dx
X0
by weighted Gaussian quadrature, A very powerful technique for
minimizing the machine time in production runs when f(x) and
its first derivative are continuous throughout the region of
integration.

QUAD2(N,X0,XF,FOFX)
See QUAD1
N = 2(1)8 8 D
5]
QUAD3/INTEGRATION
Function subprogram. Used to perform the numerical integration
of

XF £lx
x = X0

by weighted Gaussian quadrature. A very powerful method for
minimizing the machine time in production runs when f(x) and
its first derivate are continuous throughout the region of
integration.

QUAD3(N,X0,XF,FOFX)
See QUAD1
N = 2(1)8(2)12(4)24(8)48 17 D

6

DQUAD3 /DOUBLE PRECISION INTEGRATION

Double precision version of QUAD3 (q.v.)
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QUAD4/ INTEGRATION
Purpose Function subprogram. Used to perform numerical integration
of
XF
£(x) In |x - XO| ax
X0

by weighted Gaussian quadrature. A very powerful method for
minimizing the machine time in production runs when f(x) and
its first derivative are continuous throughout the region of

integration.
Calling
Sequence QUAD4(N, X0, XF,FOFX )
(See QUADL
N = 3(1)11 9 D
Method XF
X f(x) In |x - X0| ax = AX f(&X + y+X0) 1nydy
X0 0
XF
+ 1n |AX] b/ﬂ f(x) dx
X0
where
X = XF - X0
_x = X0
y = AX
"Other
Subroutines

Employed QUADL (q.v.)

Reference Private Communication from Peter Sockol




Purpose

Calling
Sequence

Reference

Purgose

Calling
Sequence

Reference

13

QUADS / INTEGRATTON

Function subprogram used to perform the numerical integration

of
[-+]
L/O e~¥f(x) dx
0

by the Gauss-Laguerre quadrature formula. A very powerful
method for minimizing the machine time in production runs when
f(x) and its first derivative are continuous throughout the
region of integration.

QUADS (N, FOFX )
See QUADL

7

QUADS / INTEGRATION

Function subprogram used to perform the numerical integration

of
+oo 2
f e~ ¥ 'r(x) dx
-

by the Gauss-Hermite quadrature formula. A very powerful
method for minimizing machine times in production runs when
f(x) and its first derivative are continuous throughout the
range of integration.

QUADE(N, FOFX )
See QUADL

9
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